
MODERN WEB APPLICATIONS

UNIT-1

Introduction: MERN, MERN Components, Serverless Hello World Application, ES6, DOM,
JSON, Installation.

React Basics: Introduction, Virtual DOM, Components in React, Tradeoffs, using JSX , React

Project Structure, State, Component Communication, Oneway data flow, Rendering and Life

Cycle method.

Q) Briefly explain MERN Components.

Any web application is made by using multiple technologies. The combination
of these technologies is called a “stack”.

MERN is an acronym that stands for MongoDB, ExpressJS, ReactJS, and
NodeJS. These four technologies are used together to create web applications
that are fast, efficient, and scalable.

MERN Components:

1. React
React anchors the MERN stack. React is an open-source JavaScript library
maintained by Facebook that can be used for creating views rendered in

HTML. You use React to render a view (the V in MVC).

1.1 Declarative

React views are declarative. A React component declares how the view
looks like, given the data. When the data changes, the React library

figures out how the new view looks, and just applies the changes
between the old view and the new view. This makes the views
consistent, predictable, easier to maintain, and simpler to understand.

1.2 Component-Based

The fundamental building block of React is a component, which
maintains its own state and renders itself.
In React, all you do is build components. Then, you put components

together to make another component that depicts a complete view or
page.
A component encapsulates the state of data and the view, or how it is

rendered. This makes writing and reasoning about the entire
application easier, by splitting it into components and focusing on one

thing at a time.
Components talk to each other by sharing state information in the form
of read-only properties to their child components and by callbacks to

their parent components.

1.3 No Templates
Many web application frameworks rely on templates to automate the
task of creating repetitive HTML or DOM elements.

In React there is an intermediate language to represent a virtual DOM,
and that is JSX, which is very similar to HTML. You can write pure

JavaScript to create your virtual DOM if you prefer.

1.4 Isomorphic
React can be run on the server too. That’s what isomorphic means: the
same code can run on both server and the browser.

1.5 VDOM

React takes care of screen refreshing in case of updates in the page

using its virtual DOM technology, in the form of a virtual
representation, an in-memory data structure. React can compute the

differences in the virtual DOM very efficiently, and can apply only these
changes to the actual DOM.

2. Node.js

Node.js is JavaScript outside of a browser. The Node.js runtime runs
JavaScript programs.

2.1 Node.js Modules
For Node.js, there is no HTML page that starts it all. In the absence of
the enclosing HTML page, Node.js uses its own module system based

on CommonJS to put together multiple JavaScript files.
Modules are like libraries. You can include the functionality of another

JavaScript file by using the keyword require.
Node.js ships with a bunch of core modules compiled into the binary.
These modules provide access to the operating system elements such

as the file system, networking, input/output, etc. They also provide
some utility functions that are commonly required by most programs.

2.2 Node.js and npm
npm is the default package manager for Node.js. You can use npm to

install third-party libraries (packages) and also manage dependencies
between them. The npm registry (www.npmjs.com) is a public
repository of all modules published by people for the purpose of sharing.

In fact, even though React is largely client-side code and can be
included directly in your HTML as a script file, it is recommended

instead that React is installed via npm. But, once installed as a
package, we need something to put all the code together that can be
included in the HTML so that the browser can get access to the code.

For this, there are build tools such as browserify or webpack that can
put together your own modules as well as third-party libraries in a
bundle that can be included in the HTML.

2.3 Node.js Is Event Driven

Node.js has an asynchronous, event-driven, non-blocking input/output
(I/O) model, as opposed to using threads to achieve multitasking.

It relies on callbacks to let you know that a pending task is completed.
So, if you write a line of code to open a file, you supply it with a callback

function to receive the results. On the next line, you continue to do
other things that don’t require the file handle. Event-driven

programming is natural to Node.js due to the underlying language
constructs such as closures.

Node.js achieves multitasking using an event loop. This is nothing but
a queue of events that need to be processed and callbacks to be run on
those events. In the above example, the file that is ready to be read is

an event that will trigger the callback you supplied while opening it.

3. Express
Node.js is just a runtime environment that can run JavaScript. Express
is the framework that simplifies the task of writing your server code.

Express is a web server framework meant for Node.js The Express
framework lets you define routes, specifications of what to do when a

HTTP request matching a certain pattern arrives.
Express parses request URL, headers, and parameters for you. On the
response side, it has, as expected, all of the functionality required by

web applications. This includes setting response codes, setting cookies,
sending custom headers, etc.

4. MongoDB
4.1 NoSQL

NoSQL stands for “non-relational”. NoSQL databases are not
necessarily relational databases.

4.2 Document-Oriented
Compared to relational databases where data is stored in the form of
relations, or tables, MongoDB is a document-oriented database. The

unit of storage (comparable to a row) is a document, or an object, and
multiple documents are stored in collections (comparable to a table).

Every document in a collection has a unique identifier by which it can
be accessed. The identifier is indexed automatically.

The downside is that the data is stored denormalized. This means that
data is sometimes duplicated, requiring more storage space.

4.3 Schema-Less

Storing an object in a MongoDB database does not have to follow a

prescribed schema. All documents in a collection need not have the
same set of fields.

4.4 JavaScript Based
For relational databases, there is a query language called SQL. For

MongoDB, the query language is based on JSON: you create, search for,
make changes, and delete documents by specifying the operation in a
JSON object.

Q) What is ES6? Explain the following each with an example.
 a. Arrow Function

 b. Rest & Spread Operators
 c. Map Object

 d. Set Object
 e. Classes
 f. Promises

 g. Symbol
 h. Modules
 i. var,let,const

 j. Destructuring

a. Arrow function:
Arrow functions allows a short syntax for writing function expressions.

You don't need the function keyword, the return keyword, and
the curly brackets.

Eg.
//ES5
var x = function(x, y) {

 return x * y;
}

//ES6

const x = (x, y) => x * y;

 arrow_function.js

 const mult = (x, y) => { return x * y };

 console.log(mult(2,5))

Output:

b. Rest Operator:

The rest operator is represented by three dots (...), and it is used to
represent an indefinite number of arguments as an array. The rest
operator is commonly used in function definitions, but it can also be

used in other contexts like array destructuring.
Eg.

rest_op.js

 function sum(...args) {

 let sum = 0;

 for (let arg of args)

 sum += arg;

 return sum;

 }

 let x = sum(4, 9, 16, 25, 29, 100, 66, 77);

 console.log("sum of numbers is ",x)

 x = sum(4, 9, 16, 25, 29);

 console.log("sum of numbers is ",x)

Output:

Spread Operator: The ... operator(Spread) expands an iterable (like an array)
into more elements

Eg.
spread_op.js

//Copying an array

let fruits = ['Apple','Orange','Banana'];

let newFruitArray = [...fruits];

console.log(newFruitArray);

//Concatenating arrays

let arr1 = ['A', 'B', 'C'];

let arr2 = ['X', 'Y', 'Z'];

let result = [...arr1, ...arr2];

console.log(result);

Output:

c. Map Object:
A Map holds key-value pairs where the keys can be any datatype.
A Map remembers the original insertion order of the keys.

Map has a property that represents the size of the map.

Map Methods

Method Description

new Map() Creates a new Map object

set() Sets the value for a key in a Map

get() Gets the value for a key in a Map

clear() Removes all the elements from a Map

delete() Removes a Map element specified by a key

has() Returns true if a key exists in a Map

forEach() Invokes a callback for each key/value pair in a Map

entries()
Returns an iterator object with the [key, value] pairs
in a Map

keys() Returns an iterator object with the keys in a Map

values() Returns an iterator object of the values in a Map

Property Description

size Returns the number of Map elements

Eg.

const map1 = new Map();

map1.set('a', 1);
map1.set('b', 2);

map1.set('c', 3);
console.log(map1.get('a')); // Expected output: 1

map1.set('a', 97);
console.log(map1.get('a')); // Expected output: 97

console.log(map1.size); // Expected output: 3

map1.delete('b');
console.log(map1.size); // Expected output: 2

console.log(map1.has('a')); // true
let iterator1 = map1.keys();

console.log(iterator1.next().value); //displays first key

iterator1 = map1.values();
console.log(iterator1.next().value);//displays first value
Output:

d. Set Object:
A JavaScript Set is a collection of unique values.

Each value can only occur once in a Set.
 A Set can hold any value of any data type.

Set Methods

Method Description

new Set() Creates a new Set

add() Adds a new element to the Set

delete() Removes an element from a Set

has() Returns true if a value exists

clear() Removes all elements from a Set

forEach() Invokes a callback for each element

values() Returns an Iterator with all the values in a Set

keys() Same as values()

entries() Returns an Iterator with the [value,value] pairs from a Set

Property Description

size Returns the number elements in a Set

Eg.

const mySet1 = new Set()

mySet1.add(1) // Set(1) { 1 }

mySet1.add(5) // Set(2) { 1, 5 }

mySet1.add(5) // Set(2) { 1, 5 }

mySet1.add('some text') // Set(3) { 1, 5, 'some text' }

const o = {a: 1, b: 2}

mySet1.add(o)

mySet1.add({a: 1, b: 2}) // o is referencing a different object, so this is okay

mySet1.has(1) // true

mySet1.has(3) // false, since 3 has not been added to the set

mySet1.has(5) // true

mySet1.has(Math.sqrt(25)) // true

mySet1.has('Some Text'.toLowerCase()) // true

mySet1.has(o) // true

mySet1.size // 5

mySet1.delete(5) // removes 5 from the set

mySet1.has(5) // false, 5 has been removed

mySet1.size // 4, since we just removed one value

mySet1.add(5) // Set(5) { 1, 'some text', {...}, {...}, 5 } - a previously

deleted item will be added as a new item, it will not retain its original

position before deletion

console.log(mySet1) // Set(5) { 1, "some text", {…}, {…}, 5 }

e. Classes:

The ES6 JavaScript supports the Object-Oriented programming
components. Classes allow developers to create blueprints for objects with

specific properties and methods.
Eg.
Class_demo.js

class Rectangle {

 constructor(height, width) {

 this.height = height;

 this.width = width;

 }

 area(){

 let a = this.height * this.width

 return a;

 }

}

const r = new Rectangle(2,5);

console.log(r.area());

Output:

10

f. Promise:

Promise help to manage asynchronous operations in JavaScript. A
promise represents a value that may not be available yet, but will be
resolved at some point in the future.

 A promise can be in one of three states:
Pending: The initial state, neither fulfilled nor rejected.

Fulfilled: Meaning that the operation completed successfully and the
promise has a resulting value.
Rejected: Meaning that the operation failed and the promise has a

reason for the failure.

 Once a Promise is fulfilled or rejected, it will be immutable.

The Promise() constructor takes two arguments that are rejected function and

a resolve function. Based on the asynchronous operation, it returns either the

first argument or second argument.

Fig. Promise States

Eg.
Promise1.js

 let myPromise = new Promise(function(myResolve, myReject) {

 let x = 1;

 if (x == 0) {

 myResolve("OK");

 } else {

 myReject("Error");

 }

});

myPromise.then(

 function(value) {console.log(value);},

 function(error) {console.log(error);}

);

Output:

Error

Promise2.js

//all()

const promise1 = Promise.resolve(3);

const promise2 = Promise.resolve(43);

const promise3 = new Promise((resolve, reject) => {

 setTimeout(resolve, 100, 'yes');

 setTimeout(reject, 1000, 'no');

});

Promise.all([promise3, promise2, promise1]).then((values) => {

 console.log(values);

});

Output:

(3) ['yes', 43, 3]

g. Symbol:

Symbols are a new primitive data type in JavaScript that represent a unique
identifier. They are created using the Symbol() function.

Symbols provide a way to create unique identifiers in JavaScript that can be
used for a variety of purposes.
Symbols can also be used to create "private" properties or methods in objects,

since they cannot be accessed using the object's keys.
Eg.
symbol_eg.js

const sym1 = Symbol();

const sym2 = Symbol("chp");

const sym3 = Symbol("chp");

console.log(sym3.valueOf())

console.log(Symbol("chp") === Symbol("chp"))

console.log(Symbol.for("praneeth") === Symbol.for("praneeth"));

const globalSym = Symbol.for('chp'); // Global symbol

console.log(Symbol.keyFor(globalSym));

Output:

symbol_obj.js

let person = {

 name: "chp",

 age: 20

};

let id = Symbol("id");

person[id] = 1;

for(let key in person) {

 console.log(key);

}

console.log(person);

Output:

In above program, the loop iterates over the name and age properties, but it

does not iterate over the id property because symbols are not enumerable by
default.

h. Modules:

In ES6, modules are a way to organize and encapsulate code into reusable,
independent components.

 Modules are defined using the export and import statements. The

export keyword is used to make functions, objects, or values available from a
module and to be used in other parts of the program. The import keyword is
used to load the exported functionality from other modules into the current

module.

 In package.json we have to add the property "type": "module" to use

modules.

Eg.

module.js

export let data = "praneeth";

export const add = (a,b) =>{

 return a+b;

};

export const mult = (a, b) => {

 return a * b;

 };

module_demo.js

import {data, add, mult} from

'./module.js';

console.log("Welcome ",data);

console.log(add(3, 4));

console.log(mult(3, 4));

Output:

i. var,let,const

var1.js

var a =10;

console.log(a)

{

 var a = 20

 console.log(a)

}

console.log(a)

Output:

10

20

20

the last display statement

also be 20, because the

inner declaration of a

persists outside the block

scope and has overwritten

the original value of a

declared at the beginning of

the program since a is

declared as var but not let.

let1.js

let a =10;

console.log(a)

{

 let a = 20

 console.log(a)

}

console.log(a)

Output:

10

20

10

This program declares two

variables with the same name "a"

but using different scopes due to

the use of the let keyword.

Const is similar to let but can’t modify the value of a variable.

const1.js

const a =10;

console.log(a)

{

 const a = 20

 console.log(a)

}

console.log(a)

Output:

10

20

10

const2.js

const a =10;

console.log(a)

{

 const a = 20

 const a =15

 console.log(a)

}

console.log(a)
Output:

SyntaxError: Identifier 'a' has

already been declared

j. Destructuring:

Destructuring is a feature that allows you to extract values from arrays or

objects and assign them to variables in a more concise and readable way.

There are two types of destructuring: array destructuring and object
destructuring.

Array Destructuring:
With array destructuring, you can assign array elements to variables by

enclosing them in square brackets [].
Object Destructuring:
With object destructuring, you can assign object properties to variables by

enclosing them in curly braces {}.

Eg.

//Array Destructuring
let fruits = ["Apple", "Banana"];

let [a, b] = fruits; // Array destructuring assignment
console.log(a, b);

//Object Destructuring
let person = {name: "Praneeth", age: 30};
let {name, age} = person; // Object destructuring assignment

console.log(name, age);
Output:

Q) What is JSON? Explain how to convert JSON object to JS object and

vice-versa.

JSON stands for JavaScript Object Notation, which is a lightweight data-

interchange format that is easy for humans to read and write, and easy for

machines to parse and generate. It is based on a subset of the JavaScript

programming language and is often used to transmit data between a server

and web application, as an alternative to XML.

Eg. JSON Data format:

{

 "name": "Ch Praneeth",
 "age": 30,

 "city": "Vijayawada",
 "email": "praneeth@ex.com",
 "phone": [

 {
 "type": "home",
 "number": "1234"

 },
 {

 "type": "work",
 "number": "5678"

 }
]
}

Eg.

json_eg.js

//json data to js object

let text = '{ "students" : ['+

'{ "firstName":"ch" , "lastName":"praneeth" },' +

'{ "firstName":"v" , "lastName":"rajesh" },' +

'{ "firstName":"P" , "lastName":"nageswarao" }]}';

console.log("Before ",typeof text)

const obj = JSON.parse(text);

console.log("After ",typeof obj)

console.log(obj.students[1].lastName)

//js object to json data

const obj1 = {

 id: 2,

 customer: "ch praneeth",

 city: "vijayawada"

 };

 console.log(JSON.stringify(obj1));

Output:

Q) Explain about DOM.

The Document Object Model (DOM) is a programming interface for web
documents. It represents the page so that programs can change the document
structure, style, and content. Essentially, it creates a tree-like structure of all

the elements on a web page, making it possible to manipulate those elements
using code.

Eg.:
index.html:

<!DOCTYPE html>
<html>

 <head>
 <title>My Subjects</title>
 <script type = "text/javascript" src="index.js"></script>

 </head>
 <body>

 <h1>Welcome to </h1>
 <p>Modern Web Applications.</p>

 React
 Express

 <input type = "button" onclick = "change()" value = "Display">

 </body>
</html>
This code creates a basic web page with a title, heading, paragraph, and a list.

When the web page is loaded, the browser creates a DOM tree that represents
the page. The tree starts with the "document" object, which represents the
entire page, and has child nodes that represent the different elements of the

page.

DOM tree for above HTML code:

document

├── html
│ ├── head
│ │ └── title

│ └── body
│ ├── h1

│ ├── p
│ └── ul
│ ├── li

│ ├── li

With the DOM, you can use JavaScript to access and manipulate any element
on the page. For example, if you wanted to change the text of the heading to
"Hello, world!", you could do it like this:

index.js
// Get the h1 element

var heading = document.getElementsByTagName("p")[0];
// Change the text of the heading

heading.textContent = "Full Stack Technologies";

This code uses the getElementsByTagName method to find the first h1
element on the page and then sets its textContent property to "Hello, world!".

This would change the text of the heading on the page to "Hello, world!".

Output:

(a) Before Clicking on Button (b) After Clicking on Button

Q) Explain React Project Structure.

Node_modules: This folder contains all the installed dependencies for the
application.

public/: This folder contains the static assets and HTML template for the
application.
 index.html: The main HTML file that serves as the entry point for the

application.
src/: This folder contains the source code of the application.

 assets/: This folder contains all the static assets used in the
application, such as images, fonts, and styles.
 images/: This folder contains all the image files used in the

application.
 styles/: This folder contains all the CSS files used in the application.
 components/: This folder contains all the reusable UI components of

the application.
 routes/: This folder consists of all routes of the application. It

consists of private, protected, and all types of routes. Here we can even call
our sub-route.

services/: This folder contains all the services used in the application, such
as APIs, authentication, and analytics.

utils/: This folder contains all the utility functions used in the application.
 helpers.js: A helper function implementation.

App.js: The root component of the application.
index.js: The entry point of the application that renders the root
component.

package.json: The configuration file for the project that includes all the
dependencies, scripts, and metadata.
README.md: The documentation file for the project.

Q) Explain how Virtual DOM works in React.

The Virtual DOM is a programming concept that is commonly used in web

development like React. It is an abstraction of the real DOM (Document Object
Model) and is a lightweight copy of the actual DOM, which is created and

maintained in memory.
 The Virtual DOM is used to increase the performance and efficiency of
web applications. The idea behind it is that it is much faster to manipulate

the Virtual DOM than the actual DOM.
 When a change happens, React determines differences between the

actual and in-memory DOMs. Then it performs an efficient update to the
browser’s DOM. This process is often referred to as a diff (“what changed?”)
and patch (“update only what changed”) process as shown in below fig.

Fig. React’s diffing and update procedure

Eg.

Fig. Working of Virtual DOM

• Whenever any updates happens in the application, the virtual DOM gets
modified. React computes the difference between the previous virtual

tree and the current virtual tree.
• Based on these differences React will figure out how to make updates

to the actual DOM efficiently.
• React does all the computations in its abstracted DOM and updates the

DOM tree accordingly.

• Virtual DOM enhances performance and efficiency by minimizing
expensive updates in the actual DOM

• Hence React is said to be a great performer because it manages a Virtual

DOM.

Eg.

index.js

import React from 'react';

import ReactDOM from 'react-dom';

class ExampleComponent extends React.Component {

 constructor(props) {

 super(props);

 this.state = { count: 0 };

 }

 handleClick() {

 this.setState({ count: this.state.count + 1 });

 }

 render() {

 return (

 <div>

 <p>You have clicked the button {this.state.count} times.</p>

 <button onClick={() => this.handleClick()}>Click me</button>

 </div>

);

 }

}

ReactDOM.render(

 <ExampleComponent />,

 document.getElementById('root')

);

In this example, we have a React component called ExampleComponent that maintains

a count state. When the user clicks the button, the handleClick method is called, which updates

the state with a new count. The render method returns a virtual DOM tree that reflects the new

count, and React updates the actual DOM with the minimum set of changes necessary to

achieve the desired result.

Output:

(a) Before Clicking the Button (b) After Clicking the Button

Q) Explain about JSX.

JSX is a special syntax introduced in ReactJS to write elements of
components. It is syntactically identical to HTML and hence it can be easily

read and written. Code written using JSX helps in visualizing the DOM
structure easily.

As the browser does not understand JSX code, this gets converted to
JavaScript using the plugins of the babel.

Conversion of JSX to JavaScript happens as shown below:

Advantages:
1. Improved readability: JSX can make code easier to read and

understand, especially for developers who are familiar with HTML. It allows
developers to write UI code in a more declarative and intuitive way.
2. Enhanced functionality: JSX enables developers to use the full power

of JavaScript within their markup, such as adding conditional statements,
loops, and functions directly into the markup.

3. Better performance: JSX can improve performance by reducing the
number of function calls needed to update the DOM. With JSX, React can
efficiently update only the parts of the DOM that have changed instead of re-

rendering the entire page.
4. Code reuse: JSX makes it easy to create reusable components with a
clean and concise syntax. This can lead to more efficient development and

less code repetition.

HTML vs JSX:

1 Attributes and properties: In HTML, attributes are case-insensitive, while in

JSX, attributes use camelCase syntax. For example, in HTML, we would use
class="my-class", whereas in JSX, we would use className="my-class".

2 Self-closing tags: In HTML, some tags are self-closing, such as and

. In JSX, all tags must be closed, even if they do not have any content,

like .

3 Inline styles: In HTML, we use the style attribute to add styles to an element,
and the value is a string containing CSS properties and values separated by
a semicolon. In JSX, we use the style attribute as an object, where the keys

are the CSS properties in camelCase syntax, and the values are their
corresponding values in quotes.

4 Comments: In HTML, we use <!-- --> to add comments, while in JSX, we
use {/* */}.

Q) What are React Fragments? Explain with an example.

React Fragments
By adhering to JSX syntax the <div> tag can be used for grouping the

elements and this introduces an extra and unnecessary node into the DOM.
As a solution to this, React Fragments are introduced which is a common
pattern in React for a component to return multiple elements. React

Fragments allows to group a list of React elements without adding any extra
node to the DOM.

function App() {
 return (

 <React.Fragment>
 <h3>ReactJS:</h3>
 <p> React is a JavaScript library for creating User Interfaces.</p>

 </React.Fragment>
);
}

export default App;

Empty Tags

You can use empty tags instead of React.Fragment

function App() {

 return (
 <>
 <h3>ReactJS:</h3>

 <p> React is a JavaScript library for creating User Interfaces.</p>

 </>
);
}

Q) Explain about components in React.

A React component is the fundamental unit of any React application. They

are capable of encapsulating data and view as a single unit. These
components can work in conjunction with each other.
Components make code reusable, testing easy, and can take care of

separation of concerns.
Here, in ReactJS, components reside in virtual DOM and these components

will be available as nodes in actual DOM as shown below:

In React.js, there are two types of components: function components and

class components.
1. Function Components

A function component is a JavaScript function that takes in an object of
properties (props) as its argument and returns a React element. Function
components are the simplest way to create components in React.

Eg.

Welcome.js

import React from 'react';

function Welcome(props) {

 return <h1>Hello,

{props.name}!</h1>;

}

export default Welcome;

index.js

import React from 'react';

import ReactDOM from 'react-

dom';

import Welcome from

'./Welcome.js';

ReactDOM.render(

 <Welcome name = "chp" />,

 document.getElementById('root')

);

This function component takes in a props object as a parameter and returns a JSX element that

displays a greeting message with the name passed in as a prop.

Output:

2. Class Components
A class component is a JavaScript class that extends the React.Component

class. Class components have more features than function components, such
as state and lifecycle methods.

 Eg.

Welcome.js

import React from 'react';

class Welcome extends

React.Component {

 render() {

 return <h1>Hello,

{this.props.name}!</h1>;

 }

}

export default Welcome;

index.js

import React from 'react';

import ReactDOM from 'react-

dom';

import Welcome from

'./Welcome.js';

ReactDOM.render(

 <Welcome name = "praneeth" />,

 document.getElementById('root')

);

This class component defines a render() method that returns a JSX
element that displays a greeting message with the name passed in as a prop.

The this.props object is used to access the props passed to the component.

Output:

Q) What are state and props? Explain with suitable examples.

In a real-time application, components must deal with dynamic data. This

data could be something internal to the component or may be the data that

is passed from another component. To bind the data to the component, you

need two JS objects i.e., state and props.

State:

• States are mutable

• They are reserved for interactivity. The component's event handlers may

update the state and trigger a UI update

• The state will be set with a default value when component mounts and

will mutate in time based on user events generated

Eg.

index.js

import {createRoot} from 'react-dom/client';

import React from 'react';

class Timer extends React.Component {

 constructor() {

 super();

 this.state = {

 secondsElapsed: 0

 };

 }

 start = () => {

 this.setState({

 secondsElapsed: this.state.secondsElapsed + 1

 });

 }

 handleClick = (e) => {

 this.interval = setInterval(this.start, 1000);

 }

 render() {

 return (<React.Fragment>

 <button onClick = {this.handleClick}>Start timer</button>

 <h2> Seconds Elapsed:

 {this.state.secondsElapsed}

 </h2>

 </React.Fragment>);

 }

 }

const root = createRoot(document.getElementById('root'));

root.render(<Timer />);

Output:

Props:

• Props are immutable

• The child component cannot modify the props. However, when parent

component updates the data that is passed as props then the Child

component gets updated props.

• Whenever props are updated the component gets re-rendered and

displays the latest value in the UI.

Index.js

import {createRoot} from 'react-dom/client';

import React from 'react';

class Timer extends React.Component {

 constructor() {

 super();

 this.state = {

 secondsElapsed: 0

 };

 }

 start = () => {

 this.setState({

 secondsElapsed: this.state.secondsElapsed + 1

 });

 }

 handleClick = (e) => {

 this.interval = setInterval(this.start, 1000);

 }

 render() {

 return (<React.Fragment>

 <button onClick = {this.handleClick}>

 Start Timer

 </button>

 <Resultant new = {this.state.secondsElapsed}/>

 </React.Fragment>);

 }

}

class Resultant extends React.Component {

 render() {

 return (<div>

 <h3> Seconds Elapsed: {this.props.new} </h3>

 </div>);

 }

}

const root = createRoot(document.getElementById('root'));

root.render(<Timer />);

Output:

 State Vs Props.
Characteristic State Props

Mutable Yes No

Purpose Used for mutable data that

affects UI

Used for immutable data that

is passed to a component

Set by Defined and updated within a

component.

Passed down from parent

component as an attribute or

property

Changes Changes trigger component re-

rendering

Changes don’t trigger re-

rendering unless they come

from a parent

Q) Define Hook. Make a function component as a stateful component

using hooks.

A "hook" is a special function that allows you to add stateful logic to function components.

Hooks were introduced in React 16.8 and are used to manage state and lifecycle methods in

function components.

index.js

import React from 'react';

import ReactDOM from 'react-dom';

import { useState, useEffect } from 'react';

function Example() {

 const [count, setCount] = useState(0);

 // Similar to componentDidMount and componentDidUpdate:

 useEffect(() => {

 // Update the document title using the browser API

 document.title = 'Count';

 });

 return (

 <div>

 <p>You clicked {count} times</p>

 <button onClick={() => setCount(count + 1)}>

 Click me

 </button>

 </div>

);

}

ReactDOM.render(

 <Example />,

 document.getElementById('root')

);

The useState hook is used to define a state variable called count which we initialize with a

value of 0.

The setCount function returned by the useState hook is used to update the value of count.

The useEffect hook is used to define a side effect that will run every time the component

renders.

Output:

Q) Explain how component communication takes place in React (or)

Explain composite component in React (or) Explain how to establish

relation between components (Parent-Child).

Components can receive data from their parent components via props, which

are essentially properties that are passed down from the parent component.

index.js

import React from "react";

import ReactDOM from 'react-dom';

function ParentComponent() {

 const name = "Praneeth";

 return (

 <div>

 <h1> Hello </h1>

 <ChildComponent name={name} />

 </div>

);

}

function ChildComponent(props) {

 return <h2>Welcome, {props.name}!</h2>;

}

ReactDOM.render(

 <ParentComponent />,

 document.getElementById('root')

);

Output:

Q) Explain data flow in React.

In react data flow is one-way from parent component to child component. The

parent component passes data as props to its child component, and the child

component can only read the data but cannot modify it. If the child component

wants to change the data, it needs to send a request to the parent component,

and the parent component will decide whether to modify the data and pass

the updated data as props to the child component.

Eg.

index.js

import {React, useState} from "react";

import ReactDOM from 'react-dom/client';

function Parent() {

 const [count, setCount] = useState(0);

 const incrementCount = () => {

 setCount(count + 1);

 };

 return (

 <div>

 <h1>Count: {count}</h1>

 <Child count={count} onIncrement={incrementCount} />

 </div>

);

}

function Child(props) {

 return (

 <div>

 <button onClick={props.onIncrement}>Increment</button>

 <p>Count from parent: {props.count}</p>

 </div>

);

}

const root = ReactDOM.createRoot(document.getElementById('root'));

root.render(

 <Parent />

);

Output:

Here, the Child component can display the count value, but it cannot modify

it directly. Instead, it calls the onIncrement() that is passed as a prop to the

Parent component when the user clicks the "Increment" button. The Parent

component updates the count value using the setCount() and passes the

updated value to the Child component as props.

Q) Explain about Mutable and Immutable states in React.

Mutable state:
In React, state is a data structure that holds information about the component
that can change over time. When we talk about mutable and immutable states

in React class components, we're referring to how the state is updated.

Mutable state refers to state that can be modified directly.

Eg. Mutable state:

state = {
 count: 0

};

We can modify the count value directly using the setState method like this:

this.setState({ count: this.state.count + 1 });

This changes the value of count in place, meaning that the original state object is modified.

On the other hand, immutable state refers to state that cannot be modified directly. Instead, we

create a new object that represents the updated state. We do this by making a copy of the

original state object, modifying the copy, and then setting the state to the new object.

Eg. immutable state:

state = {

 person: {

 name: "Praneeth",

 age: 30

 }

};

handleClick = () => {

 const updatedPerson = {

 ...this.state.person,

 age: this.state.person.age + 1

 };

 this.setState({ person: updatedPerson });

};

a) Write a program in React.js to illustrate Mutable state

Index.js

import React from "react";

import ReactDOM from 'react-dom';

class Secret extends React.Component{

constructor(props) {

super(props);

this.state = {

name: 'Praneeth',age:NaN

};

this.onButtonClick = this.onButtonClick.bind(this);

}

onButtonClick() {

this.setState(() => ({

age: 31

}));

}

render() {

return (

<div>

<h1>{this.state.name} age {this.state.age}</h1>

<button onClick={this.onButtonClick}>reveal the age!</button>

</div>

)

}

}

ReactDOM.render(

 <Secret />,

 document.getElementById('root')

);

Output:

b) write a program in React.js to illustrate Immutable state using

Props.

index.js

import React from "react";

import ReactDOM from 'react-dom';

function ChildComponent(props) {

 const newProps = {

 ...props,

 value: props.value + 1

 };

 return (

 <div>

 <h2>Child Component</h2>

 <p>Value: {props.value}</p>

 <p>New Value: {newProps.value}</p>

 </div>

);

}

function ParentComponent() {

 const [value, setValue] = React.useState(0);

 return (

 <div>

 <h1>Parent Component</h1>

 <p>Value: {value}</p>

 <ChildComponent value={value} />

 <button onClick={() => setValue(value + 1)}>Increment Value</button>

 </div>

);

}

ReactDOM.render(

 <ParentComponent />,

 document.getElementById('root')

);

Output:

c) Write a program in React.js to illustrate immutable state.

 In general, the state in react is mutable. But by creating a new

copy of the state and setting the state to new copy can be made state

as immutable.

Eg.

index.js

import React,{ Component } from "react";

import ReactDOM from 'react-dom';

class Subjects extends Component {

constructor(props) {

 super(props);

 this.state = {

 sub: ["Data Structures", "DAA",

 "Java"],

 };

}

AddSub = () => {

 let newSubs = [...this.state.sub];

 newSubs.push(" DBMS ");

 newSubs.push(" Python ");

 this.setState({ sub: newSubs });

 console.log(" Subjects in the AddSub function ", this.state.sub);

};

render() {

 console.log(" Subjects in the render() ", this.state.sub);

 return (

 <div>

 <h2>Subjects to be covered for Interview:</h2>

 {this.state.sub.map((sub, idx) => (

 <div key={idx}>

 <h4> {sub}</h4>

 </div>

))}

 <button onClick={this.AddSub}>Add Subjects</button>

 </div>

);

}

}

ReactDOM.render(

 <Subjects />,

 document.getElementById('root')

);

Output:

Q) Explain how to pass a method as props with an example.

FC.js

import React from 'react';

import ChildComponent from './SC';

function ParentComponent() {
 const handleClick = () => {
 alert('Button clicked!');

 }

 return (

 <div>
 <h1>Parent Component</h1>

 <ChildComponent handleClick={handleClick} />
 </div>
);

}
export default ParentComponent;

Here, the ParentComponent component defines a function called handleClick.
It then renders a ChildComponent component and passes this function to it

as a prop called handleClick.

SC.js

import React from 'react';

function ChildComponent(props) {
 return (
 <div>

 <h2>Child Component</h2>
 <button onClick={props.handleClick}>Click me!</button>

 </div>
);
}

export default ChildComponent;

In the ChildComponent component, we receive the handleClick function as a
prop and use it as the onClick handler for a button.

When the button is clicked, the handleClick function in the ParentComponent
component will be called, and the alert message "Button clicked!" will be

displayed.

App.js

import ParentComponent from
"./Components/FC";

function App() {
 return (

 <div className="App">
 <ParentComponent />
 </div>

);
}

export default App;

index.js
import React from 'react';
import ReactDOM from 'react-

dom/client';

import App from './App';

const root =

ReactDOM.createRoot(document.ge
tElementById('root'));

root.render(

 <App />

);

Output:

(a) Before Clicking on Button (b) After Clicking on Button

Q) Explain how data flows in React

One-way data flow is a fundamental principle in React, which means that data flows in one direction,

from the parent component to the child component. In other words, the parent component passes

data as props to its child component, and the child component can only read the data but cannot

modify it. If the child component wants to change the data, it needs to send a request to the parent

component, and the parent component will decide whether to modify the data and pass the

updated data as props to the child component.

Eg. index.js

import {React, useState} from "react";

import ReactDOM from 'react-dom/client';

function Parent() {

 const [count, setCount] = useState(0);

 const incrementCount = () => {

 setCount(count + 1);

 };

 return (

 <div>

 <h1>Count: {count}</h1>

 <Child count={count} onIncrement={incrementCount} />

 </div>

);

}

function Child(props) {

 return (

 <div>

 <button onClick={props.onIncrement}>Increment</button>

 <p>Count from parent: {props.count}</p>

 </div>

);

}

const root = ReactDOM.createRoot(document.getElementById('root'));

root.render(

 <Parent />

);

In this example, the Parent component has a state variable count that is

initialized to 0. It passes count and the incrementCount function as props to

the Child component. The Child component can display the count value, but

it cannot modify it directly. Instead, it calls the onIncrement function that is

passed as a prop to the Parent component when the user clicks the

"Increment" button. The Parent component updates the count value using the

setCount function and passes the updated value to the Child component as

props. The Child component then re-renders with the updated count value.

This is an example of one-way data flow because the data only flows from the

Parent component to the Child component, and the Child component cannot

modify the data directly.

Q) Explain about defaultProps and PropTypes with suitable examples.

defaultProps is used to set default values for props in case they are not

passed explicitly by the component. It is defined as a static property on the

component class.

PropTypes is used to specify the expected type of props for a component. It

is also defined as a static property on the component class. If the component

passes props that do not match the expected types, a warning will be logged

to the console in development mode.

Eg.

index.js

import React from "react";

import {createRoot} from 'react-dom/client';

import PropTypes from 'prop-types';

class PropsDemo extends React.Component {

 static defaultProps = {

 name: 'chp'

 };

 static propTypes = {

 name: PropTypes.string.isRequired,

 age: PropTypes.number

 };

 render() {

 return (

 <div>

 <div>Name: {this.props.name}</div>

 <div>Age: {this.props.age}</div>

 </div>

);

 }

}

const root = createRoot(document.getElementById('root'););

root.render(<PropsDemo age={30} />);

Output:

In the above example,

 if the component does not pass the name prop to PropsDemo, the

default value of 'chp' will be used.

 PropTypes are used to specify that the name prop is a required string

and the age prop is an optional number.

Q) Explain indetail about Component Life Cycle in React.

React components have a life cycle of their own, and they go through a series of phases during

their lifetime. These phases are divided into 3 main categories: Mounting, Updating,

Unmounting.

1. Mounting: This phase occurs when a component is created and inserted into the DOM.

During the Mounting phase, the following methods are called:

i. constructor(): This is the first method that is called when a component is created. It

is used to initialize state and bind methods.

ii. componentWillMount(): It is called just before a component is mounted. IT is

mainly used to set the initial state of a component, or to perform any actions that

should be done before the component is mounted.

iii. render(): It returns a description of what the component should render.

iv. componentDidMount(): It is called after the component has been inserted into the

DOM.

2. Updating: This phase occurs when a component is updated due to changes in props or state.

During the Updating phase, the following methods are called:

i. shouldComponentUpdate(nextProps, nextState): This method is called before the

component is updated. It should return a boolean value indicating whether the

component should update or not. By default, it returns true.

ii. componentWillUpdate(nextProps, nextState): method is a lifecycle method in

React that is called just before a component is re-rendered due to changes in its state

or props. You can use the componentWillUpdate() method to perform any

necessary actions before the component is updated.

iii. render(): This method is called to re-render the component with the updated state

and/or props.

iv. componentDidUpdate(prevProps, prevState): This method is called after the

component has been updated. This is where you can perform any side-effects, such

as fetching new data.

3. Unmounting: This phase occurs when a component is removed from the DOM. During the

Unmounting phase, the following method is called:

i. componentWillUnmount(): This method is called just before the component is removed from

the DOM. This is where you can perform any cleanup, such as removing event listeners or

cancelling any pending API requests.

Eg:

index.js:

import React from 'react';
import ReactDOM from 'react-dom';

class LifeCycle extends React.Component {
 constructor(props)
 {
 super(props);
 this.state = { who : "PVPSIT" };
 console.log("In constructor");
 }

 componentWillMount()
 {
 console.log("componentWillMount()");
 }

 componentDidMount()
 {
 console.log("componentDidMount()");
 }

 changeState()
 {
 this.setState({ who : "IT"});
 }

 shouldComponentUpdate(nextProps, nextState)
 {
 console.log("shouldComponentUpdate()");
 return true;
 }

 componentWillUpdate()
 {
 console.log("componentWillUpdate()");
 }

 componentDidUpdate()
 {
 console.log("componentDidUpdate()");
 }

 componentWillUnmount() {
 alert("The component named is about to be unmounted.");
 }

 render()
 {
 return (
 <div>
 <h1>Welcome to , { this.state.who }</h1>
 <h2>
 <button onClick={this.changeState.bind(this)}>Click Here!</button>

 </h2>
 </div>);

 }
}

ReactDOM.render(
 <Lifecycle />,
 document.getElementById('root')
);

Output:

